
Theory of the scanning tunnelling microscope

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys.: Condens. Matter 3 4313

(http://iopscience.iop.org/0953-8984/3/24/001)

Download details:

IP Address: 171.66.16.147

The article was downloaded on 11/05/2010 at 12:10

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/3/24
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J.  Phys.: Candens. Matter 3 (1991) 431M321. Printed in the UK 

Theory of the scanning tunnelling microscope 
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The Bladrett Laboratow, Imperial College of Science, Technology and Medicine, 
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Received 1 February 1991 

Abstract. The formula for tunaelling between tm objects is fundamental to undw 
standing the scanning tunnelling microscope. Although an exact expression for the 
one-electron turmelling m n t  is known, its derivation hss previously been complex. 
Here we present a new derivation which is relatively simple and based on physical 
arguments. We go on to use OUT methods to show for the first time the connee 
tion between the e x a d  formula and the widely used transfer Hamiltonian method of 
Bardeen. Finally we emphasize the importance of choosing a form& that minimizes 
the computational &ort requimd to rastm the STM tip across a d a c e .  

1. Introduction 

The general problem of tunnelling between two objects has been addressed by numer- 
ous authors. Perhaps the most complete and rigorous treatment is that of Feuchtwang 
[1,2] which predates the scanning tunnelling microscope by ten years. The transfer 
Hamiltonian approach of Bardeen [3] has been much used, and more recently Tersoff 
and Hamann [4] have reformulated the problem. Lucas el al [5] and others have 
developed the theory furbher and applied it to calculations of STM current. A concise 
review of the theory can be found in the article by Lucas [6]. 

The original formulation of tunnelling theory by Feuchtwang is rigorous, but in- 
volves four long papers of complex algebra. The purpose of this paper is, 

(i) to present a concise and transparent derivation of the tunnelling formula based 
on physical arguments; 

(ii) to solve the long standing problem of deriving the Bardeen transfer Hamiltonian 
approximation from the exact formula; 

(iii) to present a fast algorithm for rastering the STM tip over the surface, valid in a 
wide range of circumstances. 

2. Deriving the current formula 

We consider an interface between two systems, A and B, each of which is connected to 
its own reservoir at infinity. When the Fermi energies are equal in the two reservoirs, 
current from A to B balances current from B to A at each energy. If A is raised by 6V 
relative to B, then in a range of energies from EF to EF i- 6V the current is entirely 
due to electrons in the A reservoir heading towards the interface. Transmission of 
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Figure 1. Schematic diagram of the s d -  and Lip. 

these electrons across the interface and ultimately into the B reservoir constitutes the 
tunnelling process. Figure 1 illustrates the situation. Electron-electron interactions 
are not considered here. 

The problem is to identify which part of the wavefunctions at the interface has 
come from the A reservoir, and which from the B reservoir. We address this problem 
by erecting an impenetrable barrier, at the interface between A and B, which will 
later be removed in a systematic way allowing identification of the sources of the 
wavefunctions, and hence the tunnelling current. We define $,(E) and &(E)  to be 
eigenstates of this separated system. Note that +A = 0 everywhere on aide B and 
conversely $B = 0 everywhere on side A. Now restore the connection hetweem sides 
A and B. Suppose this involves a change in potential of uAB. In a finite elements 
approach to calculations this potential can be thought of as a set of bonds linking 
together the finite elements in the two halves of the problem. We shall discuss a 
particular form of uAB appropriate to continuum models in section 3. We can sum the 
perturbation series for those waves which start in reservoir A and penetrate into B: 

%A = G B ~ B A ~ A  + GB~BAGAVABGBVBA~A + ' I .  = G B ~ B A ~ A  (1) 

where GA and Gs are the causal Green functions confined to one or other sides of the 
system, 

$ A G  

dBG 

GA = E - EA +ic 

G B =  E-  EB + ir 

+A 

+B 
(3) 

and tBA is the t-matrix which formally s u m  this series: 

~ B A  = U B A ( ~  - GAUABGBVBA)-', (4) 

Next we observe that obeys the Schrodinger equation within B. For purposes of 
proof we add an infinitesimal imaginary component to the energy which will ultimately 
tend to zero, 

(5) 
h2 

2m (E + ic)6$BA = --V'~$BA + v 6 4 B A  
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and if the potential is assumed to be real and local 

(6) 
hZ (E - ic)64;IA = --V264kA + V64LA. 2m 

Multiply the first of these equations by 64gA and the second by 
integrate over region B 

subtract, and 

The infinitesimal imaginary part to the energy introduces absorption into the prob- 
lem 90 that 6bBA decays slowly into region B and the integral on the left hand side 
converges. The integral on the right hand side we can transform by Gauss's theorem 
to give an integral over the interface dividing regions A and B, 

J 2 i f64~~6 '&  d3+ = BA - ,,(64;Av64BA - 6 4 ~ ~ ~ 6 ' 3 % ~ )  ' d 2 S  ( 8 )  
r h2 

B 

and identify the familiar expression for the electrical current, 

(9) 
ihe 

JBA = Z ; ; ; ( @ ; A ~ ~ ~ B A  - ~ ~ B A V ~ & A )  

and so retrieve 

where JBA is the current due to flowing across the interface between A and B and 
represents the contribution of a single 'mode'. For example in the case of a pure planar 
interface the momentum parallel to the surface would define a mode. Summing over 
all contributions to JBA we calculate the differential conductance of the STM, that is 
to say the rate of change of tunnelling current with applied voltage, V, 

where uA(E)  is the density of states in mode $A. Substituting for 

where the integration signs are subsumed in operator notation. Two further substitu- 
tions are required, 

and 

Or 
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where QGA stands for the imaginary part of CA, so that finally 

J B Pendry el al 

Note that the four implicit integrations are over the interface dividing regions A and 
B. This is an exact expression for the current across an arbitrary boundary in terms of 
the Green functions of the separated regions evaluated on the interface dividing them, 
and the t-matrix connecting them. We note in passing that our theory implicitly 
goes beyond linear response. If a large voltage is applied between A and B, then 
the differential conductance must be integrated through the voltage drop, and some 
account should be taken of the changed self-consistent potential in the barrier. Both 
these possibilities can be accommodated within our formula. 

There are nnmerous methodologies available for evaluating this expression. What 
is needed is some means of calculating the reflection coefficients of the surface and the 
tip, and hence the respective Green functions. Lucas in his review [SI describes several 
ways in which this can be done. For periodic surfaces standard methods are available, 
see [7,8], but for the tip some form of finite elements approach, such as that described 
by Lucas et al [5], or the causal surface Green function method (CSGFM) [ I l l ,  is 
probably more appropriate. 

3. Comparison with other theories 

First we shall show that our equation (15) is the same as equation (3.20) of Feucht- 
wang [2]. We start by expressing t g A  in terms of the causal Green function of the 
entire region A plus B with the barrier removed, 

~ B A  = VBA + VBAGVBA. (16) 

The relationship of SG, and SG, to Feuchtwang's p is given by 

It is now necessary to define the impenetrable barrier, vBA. Figure 2 shows a sketch 
of vBA in a direction normal to the interface. Three sorts of wavefunctions are shown: 
q is a wavefunction in the absence of the barrier and shows no discontinuities at the 
interface, q+A and 6, are wavefunctions in the presence of the barrier, which is taken 
to be high enough, and thick enough, to stop the wavefunctions penetrating from one 
side to the other. Thus in the limit 

a = O  ( * = C O  a2a = 00. (19) 

Within the barrier 
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where in the limit of a high barrier 

Note that uBA is the potential which removes this barrier so that using these definitions 
we can prove that in the limit of a high barrier 

With these substitutions we transform (15) to 

(26) 

where we have recognized that the density matrices, p, vanish on the interface BA, 
but that their derivatives do not. 

X=O x=a 
Figure 2. The impenetrable barrier separating regions A and El. 

Bardeen’s original formulation of the tunnelling problem [3] has been widely ap- 
plied, but the relationship of this approximate theory to formally exact theories bas 
not been defined. To quote Feuchtwang and Cutler [9] ‘To date no consistent, let alone 
unique, solution of this troublesome problem has been found.’. 

The problem is that the impenetrable barrier defined by (19), or by any of the 
alternative definitions, is not a weak perturbation. However, since the STM current is 
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generally weak compared with what would flow through a point actually in contact 
with the surface, it can reasonably be assumed that some quantities in the theory can 
legitimately be treated as small. Derivation of the transfer Hamiltonian formula from 
(15) is surprisingly complex. 

The trick is to recognize that the tunnelling current passes through regions which 
are remote from both surface and tip. Although the potentials inside the tip and 
inside the surface are strong and extend to infinity, their influence at the tunnelling 
interface is weak and can be treated in perturbation theory. 

Removing the potentials inside the surface and inside the tip does not change the 
Green functions at the interface very much, but will remove the crucial imaginary part 
which is responsible for the tunnelling current. Of course one has to be careful about 
what is meant by removing the potential because both the tip and the surface have 
potentials that extend into the vacuum. These tails on the potential can be ignored 
if they are effectively weak and short range, but sometimes the tail of the surface 
potential can bind surface states that extend far into the vacuum: for example the 
Rydberg surface states that have been much studied in inverse photoemission (see 
Ekhenique and Pendry [IO] for a review of these states). When the interface cannot 
be chosen out of the range of such surface states the tunnelling Hamiltonian method 
breaks down. 

For the moment assume that the surface and tip potentials have been removed. 
This leaves us with three Green functions all of which are real because by removing 
both the tip and the surface we have removed all the electronic states at the tunnelling 
energy: Go is the causal Green function for the entire region A plus B with no barrier 
at the interface and no tip or surface potential, GOA and GOB are the causal Green 
functions for regions A and B respectively with the barrier in place but no tip or 
surface potential. 

J B Pendry et ol 

Now let us return to (15). Using (16) we can approximate 

t 
~ B A  % ~ B A  M VBA + VBAGOVBA 

so that (15) becomes 

(28) 
2e2 djT % -trace ( v ~ ~ G ~ ~ J ~ ~ ( S G ~ ) V ~ ~ G ~ V ~ ~ ( Q G ~ ) )  dV An 

where we have recognized that QGA and QGB vanish at the interface BA. Next we 
calculate the surface corrections to GOA as a perturbation, 

QGA 3 (GOA + G O A ~ W O A )  = GOAQ ( 6 t s )  GOA (29) 

QGB c Q (GOB + G O B ~ ~ T G O B )  = GOB% (61,) GOB (30) 

and similarly 

so that our expression for the tunnelling conductance becomes 

(31) 
2e2 

dV fin 

which can be simplified by noting that in region A 

% -trace ~ o ~ ~ B A ~ o ~ B A G o A ~ ( 6 t s )  GOA) 

Go = GOA + GOVBAGOA (32) 
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and in region B 

Go = GOB + GOBVBAGO 
to give 

2e2 !!h = -trace (uBAGoS (61,) G , v ~ , G ~ ~ S ( ~ ~ ~ ) G ~ ~ )  dV ha 
We note that (34) contains expressions of the form 

Go(r', r )  (-2 (6 - G )  . dzS) GoA(r,r"). . 
L A  

. . . GOvBAGoA . . . = . . . 

and that 

GOA = Go - GOVBAGOA 

hence 

GoA(rrr") = Go(r,r") +f(r,r") 
where f as a function of r is free of singulatities in region A, obeys the same 
Schrodinger equation as does Go, and decays exponentially away from the interface, 
BA. Substituting for GOA 

. . . GovBAGoA . . . 
= ...I,, Go(r',r)(-g(;;-6). d2S)(IGo(r,r")+f(r,r")) .... 

(38) 
The contribution from f vanishes, as can be proved by applying Gauss's theorem to 

. d 2 S f ( r , r  ) - Go(r',r) 
L A  I' - L A  

where the surface of integration on the right hand side has been removed far away 
from the interface BA. Since f decays exponentially away from BA, its contribution 
to the integral must vanish and (38) simplies to 

. . . GouBAGOA . . . - - . . . I,,Go(r',r)(-&(;;-G). dzS)Go(r,r") ... 
= . . . GoIBAGo.. . (40) 

where we have used the operator IBA to simplify our notation. Our expression for the 
tunnelling conductance becomes 

where G, and Gs are the Green functions of the system containing respectively only 
the tip and only the surface, calculated wilhoul the barrier at the interface. This is 
Bardeen's transfer Hamiltonian formula, valid only when an interface between tip and 
surface can be found on which the density of states is small. 
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4. Rastering the tip across the surface 

Calculation of the tunnelling current is not a trivial computation, and if the entire 
calculation had to be repeated for every position of the tip the effort would be prc- 
hibitative. In this respect the transfer Hamiltonian formalism has a great advantage 
because once GT and G, have been calculated, at any subsequent position of the tip, 
R, the tunnelling conductance can be found by a simple convolution, 

% SJ,, dSi ~ S Z I B A ( ~ I ) S G T ( ~ I  - R,rz - RVBA(~Z)~GS(~Z~~I). (42) 

For this reason the transfer Hamiltonian formalism should be used wherever its 
approximations are valid. 

Suppose that it is not possible to define an interface on which the density of states 
of both the tip and the surface is small. Then the transfer Hamiltonian formalism is 
not valid. However, it may still be the case that we can avoid the immense labour of 
recalculating all the Green functions for each new tip position. The simplicity of (35) 
arises because one of the objects in the convolution, G,, is invariant with respect to 
translation across the surface. It may sometimes happen that this desirable feature 
can be retained. 

In general an STM tip is not brought closer than 5-10 A from the surface, otherwise 
electrical and mechanical instabilities result. In the centre of a 10 8, gap between 
surface and tip, the dominant potential is in most instances that due to image forces. 
On the surfaces of insulators there may be uncompensated charges which invalidate 
this assumption, but for most conductors it is true. Furthermore at 5 A from the 
surface the image force has lost all but its zero order Fourier components parallel 
to the surface, due to their exponential decay away from the surface. So at least 
the potential at a point mid-way between tip and surface is invariant to translation 
of the tip acros the surface. In addition we know that the surface states of the 
image potential are not strongly modulated parallel to the surface. This has been 
demonstrated theoretically and confirmed by inverse photoemission experiments: a 
review of work in this field can be found in Echenique and Pendry [IO]. This means 
that the Green functions evaluated at an interface half way between tip and surface 
will be approximately invariant to translation of the tip. So returning to (15) and 
remembering that region B is associated with the tip, we can write 

= fT(rl - R,rl - R). (43) 

Hence on substituting into (15) 

which has the desired form: fT and GA can be prepared independent of the position 
of the tip and then combined in this simple formula for any tip position. 
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5. Conclusions 

We have given a simple proof of the exact formula for the STM current, and shown 
that it is equivalent to the Feuchtwang result previously derived by more complicated 
methods. The relationship to the transfer Hamiltonian formulation of tunnelling was 
demonstrated for the first time, under the assumption that the density of states in 
the tunnelling barrier can be assumed small. Finally we pointed out the importance 
of an efficient algorithm for rastering an STM tip over a surface, and showed that 
the transfer Hamiltonian satisfies this requirement. This efficiency could be retained 
under a more general set of assumptions than required for the validity of the transfer 
Hamiltonian, but in the most general instance a new calculation for each tip position 
will be required. 
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